CS152: Computer Systems Architecture
Multiprocessing and Parallelism

(1
>

Sang-Woo Jun

Winter 2021
Large amount of material adapted from MIT 6.004, “Computation Structures”,
U ‘ I Morgan Kaufmann “Computer Organization and Design: The Hardware/Software Interface: RISC-V Edition”,
and CS 152 Slides by Isaac Scherson

Why focus on parallelism?

d Of course, large jobs require large machines with many processors
o Exploiting parallelism to make the best use of supercomputers have always been
an extremely important topic
J But now even desktops and phones are multicore!
O Why? The end Of l(Dennard Scalingll - Moorle‘sLawforCPUSIpeed (1959;’3.0.Slources:lntel. IBM. TI, Polsson)

| | 'UraSPARC+7 = +
PAll0.BuUm x -
00000 e H L] @] I...’___,.,-."
; - FF’-I [®
10000 e e — ../__/'/) Fl'i -
o . 7 486
I Coppe
= - 1386
=~ L1000 S eeeeecmee e neened g S BEK
% : T
=1 Aluminiu m VLIW
o ; T i 8085
LC 100 :._./_.f.'i e :f:lzl ;?:l:.
g .'./...f: " H) _}l_n_u_}l
5) ~ Superscalar Moore's Law (3.0) -
ST/ ——— ’,.”
" = |Whath d?
> e at happened:
1 oS SO S : : :
BJT CMOS | BiCMOS | :
0.1 a1 1 I J 1 L
1970 1980 1950 2000 2010 2020

Time [yr]

Option 1: Continue Scaling Frequency a@
Increased Power Budget g

e
PO ; Samm
P e e
. Rockeh,
N
~ 100
=
L
7]
£
©
<

Hot plate Certium® .|l
10 Sritieen@ || @

Pa2niium® Pro pentium-//

Pentium®

i486

1.5u 1p 0.7u 05p 035p 025p 018y 013y O.1lp 007u 0014u

* “New Microarchitecture Challenges in the Coming Generations of CMOS Process Technologies™—
Fred Pollack. Intel Corp. Micro32 conference key note- 1999,

But Moore's Law Continues Beyond

Moore’s Law — The number of transistors on integrated circuit chips (1971-2016)

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years.

OurWorld
in Data

This advancement is important as other aspects of technological progress — such as processing speed or the price of electronic products — are
strongly linked to Moore's law.

20,000,000,000
10,000,000,000
5,000,000,000

1,000,000,000
500,000,000

100,000,000
50,000,000

10,000,000
5,000,000

Transistor count

1,000,000
500,000

100,000
50,000

10,000
5,000

1,000

IBM z13 Storage Controller. SPARC M7
18-core Xeon Haswell-ES Ad

Xbox One main SoC. \ @ 22-core Xeon Broadwell-ES
61-core Xeon Phi 8.(13 cnre xeon Ivy Bridge-EX

12-core POWER
8-core Xeon Nehalem-EX A"\e ASX (m core ARM64 “mabile SoC")
e+ &F"ﬂ(fms Core i7 Broadwell-U

PP
Six-core Xeon 7400, 3 g& CWEUCOCTS,‘
Dual-core lanum 2¢p @ $ A4 o@uad core + GPU GT2 Core i7 Skylake K
Pentium D Presler g -4 9 Ty Ouad -core + GPU Core i7 Haswell
Itanium 2 with, Apple A7 (dual-core ARM64 "mobile SoG")
§ MB cachedy Core i7 (Quad)
Itanium 2 Madison 6M€p Qéﬂffﬁﬂo\‘ﬁgu%‘iﬁ ML
Pentium D Smithfield~,_ ore 2 Duo Conroe
Itanium 2 McKinley{p ell @Core 2 Duo Wolfdale 3M
Pentium 4 Prescott-2 \QCcre 2 Duo Allendale
o Pentium 4 Cedar Mill
Pentium 4 Prescott

Pentium 4 Northwoo
Barton
Pentium 4 Willamette ¢ %:\uﬁ 1l Tusalatin
Pentium Il Mobile Dixon,

POWERGS

AMD Ke €

QAtom
QARM Cortex-AS

AMD K7 ©Pentium lil Coppermine
AMD K61l
AMD K6 S Pentiym Il Katma
Pentium pmo ? g”entlum eschu es
Klamath
Pemwun—b MD K5
SAT110
Intel 80486,
el o %o
e 22ty &
Intel 80386° Intel o € ARM 3
Motorola 68020 g 8e0Q
e Rt o
Mgé%’(%a Intel 80286 é%“,(‘m
° intel 80186
Intel 80864p € Intel 8088 QARM 2 AF?M 5
0AFXM1
Matorola GSCBCiG e
TMS 1000 Zilegzsg - 6809 wl s
RCA1802 uoigoss 00002
Intel 8005g, Intel 8080
MOS Technology
Mgtorola g5p2

el agba 8800
N O S S A - A S M MRS AR S SR SN
NN RN N N N RN TR NN R g g)))

Data source: Wikipedia (https://en.wikipedia.org/wiki/Transistor_count)

The data visualization is available at QurWorldinData.org. There you find more visualizations and research on this topic.

Year of introduction

Licensed under CC-BY-SA by the author Max Roser.

2006

State of Things at This Point (2006)

1 Single-thread performance scaling ended
o Frequency scaling ended (Dennard Scaling)
o Instruction-level parallelism scaling stalled ... also around 2005

d Moore’s law continues

o Double transistors every two years
o What do we do with them?

Instruction Level Parallelism

Ll ad

B Transistors (000)

® Clock Speed (MHz)
A Power (W)

® Perf /Clock (ILP)

1985 1990 1995 2000 2005 2010
K. Olukotun, “Intel CPU Trends”

Crisis Averted With Manycores?

Nuclear Reactor

Hot Plate

¢ Pentium®Pro processo, T
Pentium® processor
‘i486
¥isse
1 0.1

CD (um)

Energy Efficient Circuit Design and the Future of Power Delivery

Crisis Averted With Manycores?

600
2
S ©00
5 400 m SoC Networking
o 300 Applications
8 m SoC Stationary
= 200 : Consumer Applications
o 100 I I SoC Portable Consumer
< Applications
ovadaamudll PP

A 5. O VD & 0 0 A D *e
QQQ'\'\\\\\\\\ -
PR R PR R R R QP

We’'ll get back to this point later. For now, multiprocessing!

Source:
International Roadmap for Semiconductors 2007 edition (http.//www.itrs.net/)

The hardware for parallelism:
Flynn taxonomy (1966) recap

Data Stream

Single Multi
Instruction Single SISD SIMD
Stream (Single-Core Processors) (GPUs, Intel SSE/AVX extensions, ...)
Multi MISD MIMD
(Systolic Arrays, ...) (VLIW, Parallel Computers)

Flynn taxonomy

Instructions

A 4

Processing
Unit

Instructions

A 4 A 4

Processing N Processing
Unit Unit

Single-Instruction
Single-Data
(Single-Core Processors)

Multi-Instruction
Single-Data
(Systolic Arrays,...)

Instructions

Processing
Unit

Processing
Unit

v

Processing
Unit

Single-Instruction
Multi-Data
(GPUs, Intel SIMD Extensions)

Today

Shared memory multiprocessor

d SMP: shared memory multiprocessor

o Hardware provides single physical
address space for all processors

o Synchronize shared variables using locks

o Memory access time
* UMA (uniform) vs. NUMA (nonuniform)

Processor

Processor

Processor

Interconnection Network

d Also often SMP: Symmetric multiprocessor
o The processors in the system are identical, and are treated equally

A
Y

Memory

d Typical chip-multiprocessor (“multicore”) consumer computers

UMA between cores sharing a package,

M e m O ry SySte m ArC h Ite Ctu re But NUMA across cores in different packages.

Overall, this is a NUMA system

Package Package
Core Core Core Core
L1 1S L1 DS L1 1S L1 DS L1 1S L1 DS L1 1S L1 DS
L2 S L2 S L2 S L2 S

L3S

L3S
RS g1

| S 7| S

DRAM DRAM

Memory System Bandwidth Snapshot
(2021)

Cache Bandwidth Estimate
64 Bytes/Cycle ~= 200 GB/s/Core

Processor \ Processor
DDR4 2666 MHz
128 GB/s

s

DRAM Ultra Path Interconnect DRAM
Unidirectional
20.8 GB/s

Memory/PCle controller used to be on a separate “North bridge” chip, now integrated on-die
All sorts of things are now on-die! Even network controllers!

Memory system Issues with multiprocessing

(J Suppose two CPU cores share a physical address space
o Distributed caches (typically L1)
o Write-through caches, but same problem for write-back as well

Time | Event CPU A’s CPU B’s Memory
step cache cache

0 0

1 CPU Areads X 0 0

2 CPU B reads X 0 0 0

3 CPU A writes 1 to X 1 0 1

Wrong data!

Memory system Issues with multiprocessing

J What are the possible outcomes from the two following codes?
o Aand B are initially zero

Processor 1: Processor 2:
1: A=1,; 3:B=1;
2: print B 4: print A

o 1,2,3,40r3,4,1,2 etc: “01”
o 1,3,2,40r1,3,4,2 etc: “11”

o Can it print “10”, or “00”? Should it be able to?

Memory problems with multiprocessing

!I Cache coherency (The two CPU example)
o Informally: Read to each address must return the most recent value
o Complex and difficult with many processors
o Typically: All writes must be visible at some point, and in proper order

d Memory consistency (The two processes example)

o How updates to different addresses become visible (to other processors)
o Many models define various types of consistency
* Sequential consistency, causal consistency, relaxed consistency, ...

o In our previous example, some models may allow “10” to happen, and we must
program such a machine accordingly

Grad level topic...

CS152: Computer Systems Architecture
Cache Coherency Introduction

(1
>

Sang-Woo Jun

Winter 2021
Large amount of material adapted from MIT 6.004, “Computation Structures”,
U ‘ I Morgan Kaufmann “Computer Organization and Design: The Hardware/Software Interface: RISC-V Edition”,
and CS 152 Slides by Isaac Scherson

The cache coherency problem

1 All cores may have their own cached copies for a memory location

J Copies become stale if one core writes only to its own cache

d Cache updates must be propagated to other cores

o All cores broadcasting all writes to all cores undermines the purpose of caches
o We want to privately cache writes without broadcasting, whenever possible

Mem[X]++;

We expect Mem([X] ==

Core O

Cache

Addr
Mem[X]

Value

m‘

Wrong!

Mem[X]++;

Core 1l

Cache

Addr
Mem([X]

Value
M <«

Wrong!

Background: On-chip interconnect

J An interconnect fabric connects cores and private caches to upper-level
caches and main memory

o Many different paradigms, architectures, and topologies
* Packet-switched vs. Circuit-switched vs. ...
* Ring topology vs. Tree topology vs. Torus topology vs. ...

(J Data-driven decision of best performance/resource trade-off

Core Core Core

A A A
A 4 A 4 A 4

Cache Cache Cache

§. L

P2 —

_< X
< Interconnect ~_ 7A=] Shared Cache

- ~
7

—————

Background: Bus interconnect

d A bus is simply a shared bundle of wires
o All communication is immediate, single cycle
o Only one entity may be transmitting at any given clock cycle

o All data transfers are broadcast, and all entities on the bus can listen to all
communication

o If multiple entities want to send data (a “multi-master” configuration) a separate
entity called the “bus arbiter” must assign which master can write at a given cycle

CPU + Cache CPU + Cache CPU + Cache

28 L Ll Shared Cache

Background: Mesh interconnect

J Each core acts as a network switch

o Compared to bus, much higher aggregate bandwidth
* Bus: 1 message/cycle, Mesh: Potentially as many messages as there are links

o Much better scalability with more cores
o Variable cycles of latency
o A lot more transistors to implement, compared to bus

CPU + Cache K= CPU + Cache K=Y CPU + Cache

]] i

CPU + Cache =} CPU + Cache K= CPU + Cache K=Y Shared Cache

Desktop-class multicores migrating from busses to meshes (As of 2021)

Here we use busses for simplicity of description

Keeping multiple caches coherent

] Basic idea
o If a cache line is only read, many caches can have a copy
o If a cache line is written to, only one cache at a time may have a copy

d Writes can still be cached (and not broadcast)!

d Typically two ways of implementing this
o “Snooping-based”: All cores listen to requests made by others on the memory bus

o “Directory-based”: All cores consult a separate entity called “directory” for each
cache access

Snoopy cache coherence

1 All caches listen (“snoop”) to the traffic on the memory bus
o Some new information is added to read/write requests

] Before writing to a cache line, each core must broadcast its intention
o All other caches must invalidate its own copies

o Algorithm variants exist to make this work effectively (MSI, MSIE, ...)

“dirty” instance can exist in

Addr Value Addr Value Addr Value only one place!
Mem(X] 0 Memi[X] 0 Mem([X] 2 Many cores writing to X may
cause ping pong...
CPU + Cache CPU + Cache CPU + Cache Ping pons
“I want to write to X” “I want to waatkfroxi’X”
"v v "V

T Ll Shared Cache

Performance issue with cache coherence:
False sharing

1 Different memory locations, written to by different cores, mapped to
same cache line
o Core 1 performing “results[0]++;”
o Core 2 performing “results[1]++;”

(Jd Remember cache coherence
o Every time a cache is written to, all other instances need to be invalidated!
o “results” variable is ping-ponged across cache coherence every time
o Bad when it happens on-chip, terrible over processor interconnect (QPI/UPI)

J Solution: Store often-written data in local variables

Some performance numbers
with false sharing

Speedup for Example 1 Speedup for Example 2
; =9 "
GaD “00. w
BT
% e . $ -
3 a ¢ 4 v
B v |
g v 2 -.f
- 08 v M -
pr Q.’ ~ s
8 . P e £ w0 r_
i Voice of Experience
Joe Duffy at Microsoft:
During our Beta1 performance milestone in Parallel Extensions,
most of our performance problems came down to stamping out
false sharing in numerous places.
Vvith False Sharing vvithout ralse Sharing
Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.

http://www.aristeia.com/ Slide 29

Hardware support for synchronization

 In parallel software, critical sections implemented via mutexes are critical
for algorithmic correctness

(d Can we implement a mutex with the instructions we’ve seen so far?
o e.g.,
while (lock==False);
lock = True;

// critical section
lock = False;

o Does this work with parallel threads?

Hardware support for synchronization

J By chance, both threads can think lock is not taken

o e.g., Thread 2 thinks lock is not taken, before thread 1 takes it
o Both threads think they have the lock

Thread 1 Thread 2
while (Iock==FaIseb while (lock==False);
lock = True; lock = True;

// critical section // critical section
lock = False; lock = False;

Algorithmic solutions exist! Dekker’s algorithm, Lamport’s bakery algorithm...

Hardware support for synchronization

d A high-performance solution is to add an “atomic instruction”
o Memory read/write in a single instruction

o No other instruction can read/write between the atomic read/write
o e.g., “if (lock=False) lock=True”

Single instruction read/write is in the grey area of RISC paradigm...

RISC-V example

d Atomic instructions are provided as part of the “A” (Atomic) extension

J Two types of atomic instructions
o Atomic memory operations (read, operation, write)
e operation: swap, add, or, xor, ...

o Pair of linked read/write instructions, where write returns fail if memory has been
written to after the read

* More like RISC!
* With bad luck, may cause livelock, where writes always fail

d Aside: It is known all synchronization primitives can be implemented with
only atomic compare-and-swap (CAS)

o RISC-V doesn’t define a CAS instruction though

Pipelined implementation of atomic
operations

 In a pipelined implementation, even a single-instruction read-modify-
write can be interleaved with other instructions

o Multiple cycles through the pipeline

J Atomic memory operations

o Modify cache coherence so that once an atomic operation starts, no other cache
can access it

o Other solutions?

