
CS152: Computer Systems Architecture
Multiprocessing and Parallelism

Sang-Woo Jun

Winter 2021

Large amount of material adapted from MIT 6.004, “Computation Structures”,
Morgan Kaufmann “Computer Organization and Design: The Hardware/Software Interface: RISC-V Edition”,

and CS 152 Slides by Isaac Scherson



Why focus on parallelism?

❑ Of course, large jobs require large machines with many processors
o Exploiting parallelism to make the best use of supercomputers have always been 

an extremely important topic

❑ But now even desktops and phones are multicore!
o Why? The end of “Dennard Scaling”

What happened?



Option 1: Continue Scaling Frequency at 
Increased Power Budget

0.014 μ



But Moore’s Law Continues Beyond 2006



State of Things at This Point (2006)

❑ Single-thread performance scaling ended
o Frequency scaling ended (Dennard Scaling)

o Instruction-level parallelism scaling stalled … also around 2005

❑ Moore’s law continues
o Double transistors every two years

o What do we do with them?

K. Olukotun, “Intel CPU Trends”

Instruction Level Parallelism



Crisis Averted With Manycores?



Crisis Averted With Manycores?

We’ll get back to this point later. For now, multiprocessing!



The hardware for parallelism:
Flynn taxonomy (1966) recap

Data Stream

Single Multi

Instruction
Stream

Single SISD
(Single-Core Processors)

SIMD 
(GPUs, Intel SSE/AVX extensions, …)

Multi MISD
(Systolic Arrays, …)

MIMD
(VLIW, Parallel Computers)



Flynn taxonomy

Single-Instruction
Single-Data
(Single-Core Processors)

Multi-Instruction
Single-Data
(Systolic Arrays,…)

Single-Instruction
Multi-Data
(GPUs, Intel SIMD Extensions)

Multi-Instruction
Multi-Data
(Parallel Processors)

Today



Shared memory multiprocessor

❑ SMP: shared memory multiprocessor
o Hardware provides single physical

address space for all processors

o Synchronize shared variables using locks

o Memory access time
• UMA (uniform) vs. NUMA (nonuniform)

❑ Also often SMP: Symmetric multiprocessor
o The processors in the system are identical, and are treated equally

❑ Typical chip-multiprocessor (“multicore”) consumer computers



Memory System Architecture

L3 $

QPI / UPI

DRAM DRAM

Core

L1 I$ L1 D$

L2 $

Package

Core

L1 I$ L1 D$

L2 $

L3 $

Core

L1 I$ L1 D$

L2 $

Package

Core

L1 I$ L1 D$

L2 $

UMA between cores sharing a package,
But NUMA across cores in different packages.
Overall, this is a NUMA system



Memory System Bandwidth Snapshot 
(2021)

QPI / UPI

DRAM DRAM

Processor Processor

DDR4 2666 MHz
128 GB/s

Ultra Path Interconnect
Unidirectional

20.8 GB/s

Cache Bandwidth Estimate
64 Bytes/Cycle ~= 200 GB/s/Core

Memory/PCIe controller used to be on a separate “North bridge” chip, now integrated on-die
All sorts of things are now on-die! Even network controllers! 



Memory system issues with multiprocessing 

❑ Suppose two CPU cores share a physical address space
o Distributed caches (typically L1)

o Write-through caches, but same problem for write-back as well

Time 

step

Event CPU A’s 

cache

CPU B’s 

cache

Memory

0 0

1 CPU A reads X 0 0

2 CPU B reads X 0 0 0

3 CPU A writes 1 to X 1 0 1

Wrong data!



Memory system issues with multiprocessing 

❑ What are the possible outcomes from the two following codes?
o A and B are initially zero

o 1,2,3,4 or 3,4,1,2 etc : “01”

o 1,3,2,4 or 1,3,4,2 etc : “11”

o Can it print “10”, or “00”? Should it be able to?

Processor 1:

1: A = 1;
2: print B

Processor 2:

3: B = 1;
4: print A



Memory problems with multiprocessing

❑ Cache coherency (The two CPU example)
o Informally: Read to each address must return the most recent value

o Complex and difficult with many processors

o Typically: All writes must be visible at some point, and in proper order

❑ Memory consistency (The two processes example)
o How updates to different addresses become visible (to other processors)

o Many models define various types of consistency
• Sequential consistency, causal consistency, relaxed consistency, …

o In our previous example, some models may allow “10” to happen, and we must 
program such a machine accordingly

Grad level topic…



CS152: Computer Systems Architecture
Cache Coherency Introduction

Sang-Woo Jun

Winter 2021

Large amount of material adapted from MIT 6.004, “Computation Structures”,
Morgan Kaufmann “Computer Organization and Design: The Hardware/Software Interface: RISC-V Edition”,

and CS 152 Slides by Isaac Scherson



The cache coherency problem

❑ All cores may have their own cached copies for a memory location

❑ Copies become stale if one core writes only to its own cache

❑ Cache updates must be propagated to other cores
o All cores broadcasting all writes to all cores undermines the purpose of caches

o We want to privately cache writes without broadcasting, whenever possible

Core 0

Cache

Addr Value

Mem[X]

Core 1

Cache

Addr Value

Mem[X]01 Wrong!

Mem[X]++; Mem[X]++;

01Wrong!

We expect Mem[X] == 2



Background: On-chip interconnect

❑ An interconnect fabric connects cores and private caches to upper-level 
caches and main memory
o Many different paradigms, architectures, and topologies

• Packet-switched vs. Circuit-switched vs. …

• Ring topology vs. Tree topology vs. Torus topology vs. …

❑ Data-driven decision of best performance/resource trade-off

Shared Cache

Core

Cache

Interconnect

Core

Cache

Core

Cache



Background: Bus interconnect

❑ A bus is simply a shared bundle of wires
o All communication is immediate, single cycle

o Only one entity may be transmitting at any given clock cycle

o All data transfers are broadcast, and all entities on the bus can listen to all 
communication

o If multiple entities want to send data (a “multi-master” configuration) a separate 
entity called the “bus arbiter” must assign which master can write at a given cycle

CPU + Cache

Shared Cache

CPU + Cache CPU + Cache



Background: Mesh interconnect

Shared Cache

CPU + Cache

CPU + Cache

CPU + Cache

CPU + Cache

CPU + Cache

CPU + Cache

❑ Each core acts as a network switch
o Compared to bus, much higher aggregate bandwidth

• Bus: 1 message/cycle, Mesh: Potentially as many messages as there are links

o Much better scalability with more cores

o Variable cycles of latency

o A lot more transistors to implement, compared to bus

Desktop-class multicores migrating from busses to meshes (As of 2021)

Here we use busses for simplicity of description



Keeping multiple caches coherent

❑ Basic idea
o If a cache line is only read, many caches can have a copy

o If a cache line is written to, only one cache at a time may have a copy

❑ Writes can still be cached (and not broadcast)!

❑ Typically two ways of implementing this
o “Snooping-based”: All cores listen to requests made by others on the memory bus

o “Directory-based”: All cores consult a separate entity called “directory” for each 
cache access



Snoopy cache coherence

❑ All caches listen (“snoop”) to the traffic on the memory bus
o Some new information is added to read/write requests

❑ Before writing to a cache line, each core must broadcast its intention
o All other caches must invalidate its own copies

o Algorithm variants exist to make this work effectively (MSI, MSIE, …)

CPU + Cache

Shared Cache

CPU + Cache CPU + Cache

Addr Value Addr Value Addr Value

0 0Mem[X] 0Mem[X]

“I want to write to X”

1

“I want to read from X”

Mem[X]

“dirty” instance can exist in 
only one place!

Many cores writing to X may 
cause ping pong…

“I want to write to X”

12



Performance issue with cache coherence:
False sharing

❑ Different memory locations, written to by different cores, mapped to 
same cache line
o Core 1 performing “results[0]++;”

o Core 2 performing “results[1]++;”

❑ Remember cache coherence
o Every time a cache is written to, all other instances need to be invalidated!

o “results” variable is ping-ponged across cache coherence every time

o Bad when it happens on-chip, terrible over processor interconnect (QPI/UPI)

❑ Solution: Store often-written data in local variables



Some performance numbers 
with false sharing



Hardware support for synchronization

❑ In parallel software, critical sections implemented via mutexes are critical 
for algorithmic correctness

❑ Can we implement a mutex with the instructions we’ve seen so far?
o e.g.,

while (lock==False);
lock = True;
// critical section
lock = False;

o Does this work with parallel threads?



❑ By chance, both threads can think lock is not taken
o e.g., Thread 2 thinks lock is not taken, before thread 1 takes it

o Both threads think they have the lock

Hardware support for synchronization

while (lock==False);

lock = True;

// critical section

lock = False;

while (lock==False);

lock = True;

// critical section

lock = False;

Thread 1 Thread 2

Algorithmic solutions exist! Dekker’s algorithm, Lamport’s bakery algorithm…



Hardware support for synchronization

❑ A high-performance solution is to add an “atomic instruction”
o Memory read/write in a single instruction

o No other instruction can read/write between the atomic read/write

o e.g., “if (lock=False) lock=True”

Single instruction read/write is in the grey area of RISC paradigm…



RISC-V example

❑ Atomic instructions are provided as part of the “A” (Atomic) extension

❑ Two types of atomic instructions
o Atomic memory operations (read, operation, write)

• operation: swap, add, or, xor, …

o Pair of linked read/write instructions, where write returns fail if memory has been 
written to after the read
• More like RISC!

• With bad luck, may cause livelock, where writes always fail

❑ Aside: It is known all synchronization primitives can be implemented with 
only atomic compare-and-swap (CAS)
o RISC-V doesn’t define a CAS instruction though



Pipelined implementation of atomic 
operations

❑ In a pipelined implementation, even a single-instruction read-modify-
write can be interleaved with other instructions
o Multiple cycles through the pipeline

❑ Atomic memory operations
o Modify cache coherence so that once an atomic operation starts, no other cache 

can access it

o Other solutions?


